
Computed Torque Control
with Nonparametric Regression Models

Duy Nguyen-Tuong, Matthias Seeger, Jan Peters
Max Planck Institute for Biological Cybernetics, Spemannstraße 38, 72076 Tübingen

Abstract— Computed torque control allows the design of con-
siderably more precise, energy-efficient and compliant controls
for robots. However, the major obstacle is the requirement
of an accurate model for torque generation, which cannot be
obtained in some cases using rigid-body formulations due to
unmodeled nonlinearities, such as complex friction or actuator
dynamics. In such cases, models approximated from robot data
present an appealing alternative. In this paper, we compare two
nonparametric regression methods for model approximation, i.e.,
locally weighted projection regression (LWPR) and Gaussian
process regression (GPR). While locally weighted regression was
employed for real-time model estimation in learning adaptive
control, Gaussian process regression has not been used in
control to-date due to high computational requirements. The
comparison includes the assessment of model approximation for
both regression methods using data originated from SARCOS
robot arm, as well as an evaluation of the robot tracking perfor-
mance in computed torque control employing the approximated
models. Our results show that GPR can be applied for real-
time control achieving higher accuracy. However, for the online
learning LWPR is superior by reason of lower computational
requirements.

I. INTRODUCTION

Computed torque control offers a large variety of advantages
over model-free methods which are only based on model-
free linear feedback control, e.g., potentially higher tracking
accuracy, lower feedback gains, higher suitability for compli-
ant control, lower energy consumption, etc. However, a major
drawback is the requirement of precise analytical models in
order to predict the feed-forward torques required for the
execution of the trajectory. From our experience [1], [2], such
precise models cannot be obtained for many robot systems
using standard rigid body formulations due to model errors,
actuator dynamics and unmodeled nonlinearities. Thus, the
obvious question is how well can our system perform if we
use the best currently known regression techniques instead of
the analytical model?

While this goal has been considered in the past [3]–[7],
the progress in machine learning has long outpaced learn-
ing in robot control and it is about time that we reeval-
uate this issue using state-of-the-art regression techniques.
For doing so, we compare several methods for approxi-
mating the dynamics model of the system in the setting
of robot control. This comparison includes both the cur-
rently best method for real-time regression, locally weighted
projection regression (LWPR) [8], [9] and the analytical
model obtained through rigid body dynamics with esti-
mated parameters [10], [11] against the modern regression

technique, Gaussian process regression (GPR) [12], [13].

Fig. 1: Anthropomorphic SARCOS
robot arm.

Two different comparisons
are considered, i.e., (i)
the function approximation
comparison where we eval-
uate the learned function on
data generated from a seven
degrees of freedom (DoF)
anthropomorphic SARCOS
robot arm as shown in
Figure 1, (ii) the track-
ing control performance us-
ing feedforward and in-
verse dynamics model ap-
proaches [11].

The remainder of this
paper proceeds as follows:
firstly, we discuss three dif-
ferent ways how such mod-

els can be estimated. Subsequently, we discuss how these can
be used in robot control explaining our setup and, finally, we
will show how these perform in a real-time control setup.

II. MODEL ESTIMATION WITH NONPARAMETRIC
REGRESSION TECHNIQUES

Given the input x ∈ Rn and the target y ∈ Rn, the task
of regression algorithms is to learn the mapping describing
the relationship from input to target using samples. Using this
learned function, target values can be predicted for query input
points.

In this paper we will consider the locally weighted projec-
tion regression and the Gaussian process regression. Locally-
weighted projection regression is currently the standard learn-
ing method in robot control applications and has been shown
to scale into very high-dimensional domains [8], [9]. However,
it also requires skillful tuning of the meta parameters for the
learning process in order to achieve competitive performance.
Gaussian process regression [12], [13] on the other hand
achieves this higher performance with very little tuning but
has significantly higher computational requirements which
increase with the number of data points.

A. Locally Weighted Projection Regression (LWPR)

In LWPR, the function values are approximated by a com-
bination of N individually weighted locally linear models. In

addition, these values are normalized by the sum of all weights
[1], [8]. Thus, given a data point x the predicted value ŷ is

ŷ =
∑N

k=1 wkȳk∑N
k=1 wk

, (1)

with ȳk = x̄T
k θ̂k and x̄k = [(x − ck)T , 1]T , where wk is the

weight, θ̂k contains the regression parameter and ck is the
center of the k-th linear model. The weight wk is a measure
of how much a data point x falls into the region of validity of
each linear model and is characterized by a kernel function,
for which a Gaussian kernel is often used

wk = exp
(
−1

2
(x− ck)T Dk (x− ck)

)
, (2)

where Dk is a positive definite matrix which is called distance
matrix. During the learning process the main purpose is to
adjust Dk and θ̂k, so that the error between the predicted
values and the targets are minimal.

The regression parameter θ̂k can be calculated recursively
using least squared method (RLS) [1]. Thus, θ̂

n+1

k = θ̂
n

k +
wkPn+1

k x̄kek, where P is called covariance matrix and ek

is the approximation error. In new developments RLS can be
substituted by partial least square (PLS) [8], [9]. Using PLS
algorithm the regression is not done over the whole input space
as in case of RLS but only in a subspace which is determined
by principal components of the input. The key ingredient of the
algorithm consists in choosing the principal components which
are most relevant for the target spaces. Thus, the computing
cost for the regression is reduced through a dimensionality
reduction. The computational complexity is then linear in the
number of inputs [8].

The distance matrix Dk determines the size and shape of
each local model which can be updated individually by the
incremental gradient descent method. The update rule is given
by Dk =MT

k Mk with Mn+1
k =Mn

k − αδJk/δMn
k , where Jk

is a given cost function. Obtaning Dk the task is to minimize
the penalized weighted mean squared error expressed in Jk

[8].
Regarding the learning process for function approximation,

no local models are initialized [9]. Whenever a training point
x does not fall in any validity region of each linear model
characterized by a constant wgen, a new model is created with
a center ck = x. Thus, the number of local models increases
with the complexity of the input. If a training point falls into
the validity region of a model, its own distance matrix and
regression parameters will be updated. Furthermore, the update
of each model is computed completely independently of all
other models.

B. Gaussian Process Regression (GPR)

As opposed to LWPR, GPR is performed with a Gaus-
sian model completely described by its mean function and
covariance function [13]. There are two equivalent ways to
interpret the Gaussian regression, the function-space view and
the weight-space view [12]. In order to keep the parallelism
to LWPR method, the weight-space view of GPR will be

introduced here. The simplest Gaussian model which is also
useful for regression estimation is given by the linear model
[12]

f(x) = φ(x)T w , y = f(x) + ε , (3)

where x is the input vector, w is the weight vector. It is further
assumed that the observed value y is corrupted by additive
noise ε, which is independent, Gaussian distributed with zero
mean and variance σ2

n. As seen in Equation (3), the linear
computation is done after transforming the input x with a
kernel function φ(•). The aim behind this action is to project
x into a space of higher order called feature space, where the
regression problem can be solved with a linear approach [14].
For this, different functions can be taken such as the Gaussian
kernel as shown in (2). Other kernel functions can be found
in [12], [14].

With the noise assumption and the model in (3) the likeli-
hood, i.e., probability density of the observations y given the
parameters φ(x) and w, can be written as

p(y|Φ,w)∝exp(−0.5σ−2
n |y −ΦT w|2)=N (ΦT w, σ2

nI) ,

where the vectors y and w contain all target and weight values,
respectively, the matrix Φ denotes the aggregations of columns
φ(x) for all cases in the training set. It’s further assumed
that the weights are Gaussian distributed with zero mean and
variance Σp [12], [13]. Thus, the prior, i.e., probability density
of w, is given by

p(w) ∝exp
(
−0.5 wTΣ−1

p w
)

=N (0,Σp) .

According to Bayes’ rule, the posterior, i.e., probability density
of the weights given inputs and targets, is proportional to the
product of likelihood and prior [12]. Thus,

p(w|Φ,y) ∝exp(−0.5 (w − w̄)TA(w − w̄)) = N (w̄,A−1),

with A = σ−2
n ΦΦT + Σ−1

p and w̄ = σ−2
n A−1Φy. To make

a prediction f(x∗) for a new input x∗ the outputs of all
linear models are averaged and additionally weighted by their
posterior. In so doing, the predicted mean f̄∗ and predicted
variance V∗ can be given as follow [12]

f̄∗ = k∗T
(
K + σ2

nI
)−1

y = k∗T ζ ,

V∗ = k(x∗,x∗)− k∗T
(
K + σ2

nI
)−1

k∗ ,
(4)

where k∗ = φ∗
T ΣpΦ, k(x∗,x∗) = φ∗

T Σpφ∗ and K =
ΦT ΣpΦ. Equation (4) represents the key equation for the
Gaussian process, in which f̄∗ gives the predicted value for
an observed input x∗ and V∗ the corresponding uncertainty of
the prediction. In opposite of LWPR, GPR is a global method,
since every training point is included in the prediction vector
ζ and hence has a ’global’ influence on prediction behavior.

III. COMPUTED TORQUE CONTROL TECHNIQUES

The main concept of computed torque control is to compute
controller command regarding a priori knowledge about the
system expressed in a dynamics model [10], [11], [15]. In
robot control two control methods are often used which will

Dynamics
Model Robot

q̈d

q̇d

qd

Kv
Kp

∑

∑

∑+

+ +

−

−+

+

u

qq̇

Fig. 2: Feedworward nonlinear control

be discussed in next sections, i.e., (i) feedforward nonlinear
control, (ii) inverse dynamics control [10], [11].

The traditional way to obtain a model for the system is
to analyze the physical properties and subsequently derive its
equation of motion. In so doing, the robot dynamics can be
modeled as a rigid body dynamics system

M (q) q̈ + F (q, q̇) = u , (5)

where q, q̇, q̈ are joint angles, velocities and accelerations
of the robot, u denotes the inputs to the system, M (q)
the inertia matrix of the robot, and F (q, q̇) all the forces
acting on the system (e.g., Coriolis forces, centripetal force,
gravity, friction, etc.). The system input u is in our case joint
torques given as motor command which can be computed
in various ways depending on control method. Usually, u is
computed in such a way that the robot is able to track some
desired trajectories. It should be noted that in this case we are
concerned with control problem in joint space. That means,
the desired trajectories will be given as desired joint angles,
velocities and accelerations.

A. Feedforward Nonlinear Control

Regarding the dynamics described in Equation (5), the
intention of feedforward is eliminating the nonlinearity in the
dynamics as shown in Figure 2. With the linearized system the
tracking task can be conducted by a simple PD controller. For
this, the controller command u is chosen as [11]

u = M (qd) q̈d + F (qd, q̇d) + Kpe + Kvė , (6)

where qd, q̇d, q̈d denote desired joint angles, velocities and
accelerations. Combining (6) with the rigid dynamics (5), we
have an error equation for the closed-loop: ë + M−1Kvė +
M−1Kpe = 0, where e = qd − q. The feedback gains Kp

and Kv can now be chosen, so that the error equation is
stable [11]. In case of using regression technique for model
approximation, i.e., the dynamics model is function of qd, q̇d,
q̈d, the Equation (6) can generally be written as

u = f (qd, q̇d, q̈d) + Kpe + Kvė , (7)

where f (•) is approximated by an appropriate regression
method.

Dynamics
Model Robotq̈d

q̇d

qd

Kv
Kp

∑

∑

∑+

+ +

−

−
+

+

u

qq̇

Fig. 3: Inverse dynamics control

B. Inverse Dynamics Control

Another method for cancelling nonlinearities in the dynam-
ics is applying inverse dynamics approach which is illustrated
in Figure 3. In this case, the controller command u is given
by [11]

u = M (q) q̈ref + F (q, q̇) , (8)

with q̈ref = q̈d + Kpe + Kvė. Considering the Equations (5)
and (8), the closed-lood error results in: ë + Kvė + Kpe = 0,
which is stable with an appropriate choice of Kv and Kp

[10], [11]. For regression case, the controller command in (8)
is computed as follow

u = f
(
q, q̇, q̈ref

)
. (9)

The function f (•) can be learned online or offline. In case of
online approximation we have an adaptive dynamics model,
with which the time dependency of the system can be regarded.

IV. MODEL APPROXIMATION COMPARISON

In this section, we will compare the approximation perfor-
mance of GPR and LWPR using (i) simulation data and (ii)
real SARCOS robot data. Generating the simulation data, we
use an analytical model of the 7-DoF SARCOS robot arm
modeled with the SL-software package [16]. In so doing, we
produce for each joint the corresponding torque given joint
angles, velocities and accelerations.

A. Approximation of Simulation Data

For the simulation we choose the joint angles qi of the
robot such that the relationship between the inputs, i.e., joint
angles, velocities and accelerations, and the joint torques are
sufficiently nonlinear. In this example, qi consists of two
sinusoids which have different frequencies and amplitudes for
each joint: qi(t) = Asin(2πf1it) +A/3 sin(2πf2it).

The Table V in the appendix shows the values taken
for qi. In so doing, a training set and a test set with 21
inputs and 7 targets are generated which consist of 14094
examples for training and 5560 for testing. The training
takes place for each DoF separately employing GPR and
LWPR. Table I gives the normalized mean squared error
(nMSE) in percent of the evaluation on the test set, where
the normalized mean squared error is defined as: nMSE =
Mean squared error/Variance of target.

It can be seen that GPR gives better approximation com-
pared to LWPR, since GPR is a global method. A further

nMSE Joint [i]
[%] 1 2 3 4 5 6 7

LWPR 3.9 1.6 2.1 3.1 1.7 2.1 3.1
GPR 0.7 0.2 0.1 0.5 0.1 0.4 0.6

TABLE I: Approximation error for each DoF using simulation data.
GPR provides a better approximation resulting in smaller nMSE.

nMSE Joint [i]
[%] 1 2 3 4 5 6 7

LWPR 1.7 2.1 2.0 0.5 2.5 2.4 0.7
GPR 0.5 0.3 0.1 0.1 1.5 1.2 0.2

Ana. model 5.9 226.3 111.3 3.4 2.7 1.3 1.4

TABLE II: Approximation error for each DoF using real SARCOS
data. LWPR as well as GPR show a good learning performance
with real data. nMSE of the analytical model determined by linear
regression is large for 2. and 3. DoF, which indicates that for these
DoF the analytical model fails to explain the data.

advantage of GPR is that there are only some hyperparameters
to be determined. As our input dimension is 21 and the Gaus-
sian kernel is used, there are 23 hyperparameters necessary
for each DoF which can be calculated using optimization
algorithms [12], [13]. Thus, GPR approximation can be mostly
automated. However, the main drawback is the computational
cost. In general, the training time for GPR is about 2 time
longer compared to LWPR.

The advantage of LWPR is the fast computation, since the
model update is done locally. Thus, LWPR is more capable
for a real-time application. But due to many meta parameters
which have to be set manually for the training, it is fairly
tedious to find an optimal setting for those by trial-and-error.

B. Approximation of Real Robot Data

The data is taken from the real 7-DoF SARCOS robot arm
as shown in Figure 1. Here, we have 13622 examples for
the training set and 5500 for the test set. Table II shows the
nMSE in percent after learning with real robot data for each
DoF. Additionally, we also calculate the nMSE of a linear
regression using the analytical robot model. The resulting error
will indicate, how far the analytical model can explain the data.

As seen in Table II, both LWPR as well as GPR show a
good ability on approximation with real data considering noisy
components which are unavoidable in this case. Compared to
LWPR, GPR provides better approximation for every DoF.

Considering the analytical model, the linear regression
yields very large approximation error for the 2. and 3. DoF.
Apparently, for these DoF the nonlinearities (e.g., hydraulic
cables, complex friction) cannot be approximated well using
just the rigid body functions. This example shows the difficulty
using the analytical model for control in practice. The impre-
cise dynamics model will result in poor control performance
for real system, e.g., large tracking error. This is the main
reason why model-based control is not widely used in robotics.
Here, the approximated models present a better approach [5].

V. CONTROL PERFORMANCE COMPARISON

The dynamics model is learned with trajectories given in
Table V in the appendix which are used as desired trajectories

nMSE [%] Analy. model GPR model LWPR model PD with
Joint [i] FF IDM FF IDM FF IDM g. comp.

1 0.17 0.43 0.16 0.12 0.37 0.38 10.1
2 0.69 0.86 0.73 0.74 0.74 0.73 19.7
3 0.24 0.45 0.18 0.31 0.29 0.56 8.48
4 0.55 0.10 0.53 0.77 0.65 0.99 7.14
5 0.10 0.23 0.07 0.17 0.16 0.64 3.91
6 0.42 1.06 0.23 0.56 0.40 1.11 17.3
7 0.35 2.72 0.34 2.01 0.42 2.94 4.24

TABLE III: Tracking error as nMSE for each DoF using training
trajectories. The control performance using analytical model yields
very good results, since the tracking is done in simulation and thus has
an exact analytical model. The tracking error in case of GPR model
is mostly smaller than LWPR due to better model approximation.
It can also be seen that controllers with learned model generally
provide better results compared to traditional PD approach with
gravity compensation.

nMSE [%] Analy. model GPR model LWPR model PD with
Joint [i] FF IDM FF IDM FF IDM g. comp.

1 0.26 0.68 0.78 0.59 1.45 1.55 15.3
2 0.19 0.35 1.05 1.09 0.63 0.63 7.54
3 0.06 0.16 0.24 0.55 0.19 0.37 1.75
4 1.97 3.02 2.42 3.77 3.24 5.99 7.69
5 0.09 0.18 0.23 0.58 0.23 0.61 1.98
6 0.07 0.27 0.31 1.13 0.29 0.85 2.61
7 0.16 1.21 0.23 2.12 0.26 2.71 1.66

TABLE IV: Tracking error as nMSE for each DoF using test trajec-
tories. The errors show that GPR and LWPR are able to generalize
the learned model well for trajectories similar to training trajectories.
Due to the lower frequency f2 in this case, i.e., smaller tracking
velocity, the analytical model yields smaller errors compared to the
training case. Inverse dynamics control gives a larger error compared
to feedforward control, since IDM is more sensitive against model
inaccuracy.

during the tracking afterwards. In addition, some test trajecto-
ries are also generated in order to compare the generalization
ability of each approximation method. For this purpose, the
frequency f2, the amplitudes A are modified and a phase ψ is
accessorily added to some sinussoids, as shown in the Table
VI.

Computed torque approaches introduced in Section III are
applied to control the model of the 7-DoF SARCOS robot
arm accomplishing a tracking task. For evaluation, the tracking
error of each DoF is calculated. Table III shows the tracking
error of each joint as nMSE in percent for the training
trajectories. Beside the feedforward (FF) and inverse dynamics
control (IDM), a PD controller with gravity compensation is
also computed for comparison.

It’s necessary to emphasize that the control task is done
in real-time where desired trajectories are sampled with 480
Hz. The simulation is conducted on a Macintosh personal
computer with a 2.2 GHz Intel processor.

As shown in Table IV, the control performance using
analytical model yields very good results as expected, since
the analytical model corresponds exactly the dynamics model
in this case. Comparing control quality using GPR and LWPR
models, nMSE of GPR model is mostly smaller due to better
model approximation. It can also be seen that controllers with
learned model generally provide better results compared to
traditional PD approach with gravity compensation

For LWPR we are able to calculate the controller command
u for every sample, since evaluation of the prediction values
(1) is quite fast. In contrast, with GPR the controller command
is updated at every 4th sampling step due to more involved
calculations. Before tracking task, the prediction vector ζ is
loaded from learned GPR model. The torque prediction is then
accomplished by online calculation of covariance vector k∗
and subsequently the predicted mean as given in Equation
(4). This operation has the order of O(mn), where m is the
number of robot joints and n the number of training points,
respectively.

Table IV gives the normalized mean squared error of each
joint using test trajectories. It can be seen that the tracking
error of GPR and LWPR is slightly larger than in case of
training trajectories. This fact shows that the learned models
are able to generalize well for trajectories similar to training
trajectories. Figures 4 and 5 show the tracking performance of
each joint in case of feedforward control with test trajectories.

Considering the different control approaches, the feed-
forward provides the best tracking performance. A further
advantage is that the dynamics model is outside of the loop,
and thus enables a fast inner servo-loop and a slower outside-
loop for torque prediction. Thus, in case of involved torque
calculation the feedforward control is more capable for a real-
time application. In contrast, the dynamics model is inside of
the loop in case of inverse dynamics control. If the model
is exact, the nonlinearities will be canceled out completely.
In case of imperfect match between model and system, this
setting is sensitive against model error, since the error is
not directly corrected by the closed-loop. Furthermore, using
inverse dynamics the torque computation has to be as fast as
the servo-loop which is prohibitive for time-consuming torque
calculation.

As shown in the Figures 4 and 5, the PD controller with
gravity compensation cannot provide satisfactory results for
several DoFs (e.g., 1. and 2. DoF), even though the gravity
compensation is determined using the exact dynamics model
here. Furthermore, for the PD controller high-gains have to
be taken in order to achieve competitive performance. For
example, in this case the gains for the PD controller are about
5 times larger than those used for FF and IDM controller.
However, high-gain feedback can cause several problems, such
as saturation of the actuators, excitation of the unmodeled
dynamics, large error in present of noise etc., and thus should
be avoided in practice.

VI. CONCLUSION

In this paper, we compare two regression methods, i.e.,
LWPR and GPR, for approximation of the dynamics model in
the setting of computed torque robot control. Hereunto, the dy-
namics model was learned offline and subsequently applied for
an online torque evaluation in real-time control. Two control
approaches, i.e., feedforward and inverse dynamics control,
were used for real-time tracking of a model of SARCOS
robot arm. It can be shown that with the approximated model

0 0.5 1 1.5 2 2.5 3 3.5 4
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

time [sec]

A
m

pl
itu

de
 [r

ad
]

1. Joint

0 0.5 1 1.5 2 2.5 3 3.5 4

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

time [sec]

A
m

pl
itu

de
 [r

ad
]

2. Joint

0 0.5 1 1.5 2 2.5 3 3.5 4

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

time [sec]

A
m

pl
itu

de
 [r

ad
]

3. Joint

desired
ana. model
GPR
LWPR
PD with g. comp.

Fig. 4: Tracking performance for joint 1, 2 and 3 with feedforward
control using test trajectory.

the control quality can be significantly improved towards a
traditional PD controller with gravity compensation.

Our results indicate that GPR can be made to work for
control applications in real-time, and that it is easier to
apply to learning problems and achieves a slightly higher
accuracy compared to LWPR. However, the computational
cost is prohibitively high for online learning. Our next step
is to modify GPR, so that it can be applied for an online
regression and thus is capable for real-time learning. Here, the
problem of expensive computation has to be overcome using
other techniques, such as sparse or local GPR models.

0 0.5 1 1.5 2 2.5 3 3.5 4

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

time [sec]

A
m

p
lit

u
d

e
[r

ad
]

4. Joint

0 0.5 1 1.5 2 2.5 3 3.5 4

−0.2

−0.1

0

0.1

0.2

0.3

time [sec]

A
m

pl
itu

de
 [r

ad
]

5. Joint

0 0.5 1 1.5 2 2.5 3 3.5 4
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

time [sec]

A
m

pl
itu

de
 [r

ad
]

6. Joint

0 0.5 1 1.5 2 2.5 3 3.5 4
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

time [sec]

A
m

pl
itu

de
 [r

ad
]

7. Joint

desired
ana. model
GPR
LWPR
PD with g. comp.

Fig. 5: Tracking performance for joint 4, 5, 6 and 7 with feedforward
control using test trajectory.

APPENDIX

Joint [i] A [rad] f1 [Hz] f2 [Hz]
1 0.2 0.2

√
2 1.1

2 0.2 0.3
√

3 2.3

3 0.3 0.1
√

7 2.2

4 0.3 0.1
√

17 1.7

5 0.3 0.4
√

11 1.9

6 0.25 0.2
√

5 2.7

7 0.2 0.3
√

13 2.7

TABLE V: Values taken for function approximation and training
trajectories.

Joint [i] A [rad] f1 [Hz] f2 [Hz] ψ [rad]
1 0.1 0.2

√
2 0.9 0.0

2 0.2 0.3
√

3 0.77 0.43

3 0.4 0.1
√

7 1.12 0.21

4 0.2 0.1
√

17 1.63 1.0

5 0.2 0.4
√

11 0.3 0.9

6 0.3 0.2
√

5 1.57 0.0

7 0.3 0.3
√

13 1.67 0.0

TABLE VI: Values taken for test trajectories.

REFERENCES

[1] J. Nakanishi, J. A. Farrell, and S. Schaal, “Composite adaptive control
with locally weighted statistical learning,” Neural Networks, 2005.

[2] J. Nakanishi and S. Schaal, “Feedback error learning and nonlinear
adaptive control,” Neural Networks, 2004.

[3] E. Burdet and A. Codourey, “Evaluation of parametric and nonparamet-
ric nonlinear adaptive controllers,” Robotica, vol. 16, no. 1, pp. 59–73,
1998.

[4] E. Burdet, B. Sprenger, and A. Codourey, “Experiments in nonlinear
adaptive control,” International Conference on Robotics and Automation
(ICRA), vol. 1, pp. 537–542, 1997.

[5] J. A. Farrell and M. M. Polycarpou, Adaptive Approximation Based
Control. New Jersey: John Wiley and Sons, 2006.

[6] G. Gregorcic and G. Lightbody, “Internal model control based on a
gaussian process prior model,” Proceedings of the American Control
Conference, 2003.

[7] J. Kocijan, R. Murray-Smith, C. Rasmussen, and A. Girard, “Gaussian
process model based predictive control,” Proceeding of the American
Control Conference, 2004.

[8] S. Vijayakumar and S. Schaal, “Locally weighted projection regression:
An O(n) algorithm for incremental real time learning in high dimensional
space,” International Conference on Machine Learning, Proceedings of
the Sixteenth Conference, 2000.

[9] S. Schaal, C. G. Atkeson, and S. Vijayakumar, “Scalable techniques
from nonparameteric statistics for real-time robot learning,” pp. 49–60,
2002.

[10] M. W. Spong, S. Hutchinson, and M. Vidyasagar, Robot Dynamics and
Control. New York: John Wiley and Sons, 2006.

[11] J. J. Craig, Introduction to Robotics: Mechanics and Control, 3rd ed.
Prentice Hall, 2004.

[12] C. E. Rasmussen and C. K. Williams, Gaussian Processes for Machine
Learning. Massachusetts Institute of Technology: MIT-Press, 2006.

[13] M. Seeger, “Gaussian processes for machine learning,” International
Journal of Neural Systems, 2004.

[14] B. Schölkopf and A. Smola, Learning with Kernels: Support Vector
Machines, Regularization, Optimization and Beyond. Cambridge, MA:
MIT-Press, 2002.

[15] J.-J. E. Slotine and W. Li, Applied Nonlinear Control. New Jersey:
Prentice Hall, 1991.

[16] S. Schaal, “The SL simulation and real-time control software
package.” University of Southern California. [Online]. Available:
http://www-clmc.usc.edu/publications/S/schaal-TRSL.pdf

